quarta-feira, 22 de julho de 2020


O SDCTIE GRACELI DEFENDE QUE A REALIDADE FÍSICA, QUÍMICA, BIOLÓGICA,  PSICOLÓGICA, SOCIAL, ONTOLÓGICA, E METAFÍSICA,

 E MESMO EPISTÊMICA [CONHECIMENTO E LINGUAGEM]  NÃO SE FUNDAMENTA EM OBSERVADOR , ONDE O OBSERVADOR PODE ALTERAR A REALIDADE EM SI. [PODE PARA ELE, MAS NÃO A REALIDADE EM SI]. [ISTO CAI POR TERRA O PRINCÍPIO DA INCERTEZA QUÂNTICO].

E QUE A REALIDADE SE FUNDAMENTA EM SISTEMA DE INTERAÇÕES ENVOLVENDO CATEGORIAS, DEZ OU MAIS DIMENSÕES DE GRACELI, INTERAÇÕES, TRANSFORMAÇÕES, E ESTADOS FENOMÊNICOS E TRANSICIONAIS DE GRACELI.

E NÃO  APENAS EM:  ESPAÇO E TEMPO, OU MATÉRIA E ENERGIA.


OU SEJA, A REALIDADE, OU AS REALIDADES SÃO MUITO MAIS DO QUE ISTO [ESPAÇO, TEMPO , ENERGIA E MATÉRIA]. E OU OBSERVADOR.

¨SENDO QUE AQUILO QUE NÃO SE VÊ NÃO É SINAL QUE NÃO EXISTE.
 OU AQUILO QUE SE VÊ É SINAL QUE EXISTE, OU NÃO EXISTE¨.

OS TERMONS E OS RADIONS  [DE GRACELI] ONDE SÃO FEIXES DE RADIAÇÕES EM PROPAGAÇÃO NO ESPAÇO E DENTRO DA MATÉRIA, 

E QUE TAMBÉM TEM PROPAGAÇÕES NO FORMATO DE ONDAS. 

OU SEJA, É UMA DUALIDADE ONDAS PARTÍCULAS.




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
PARA TODA E QUALQUER FORMA DE FUNÇÃO E EQUAÇÃO EM:


As formulações matemáticas da mecânica quântica são os formalismos matemáticos que permitem uma descrição rigorosa da mecânica quântica. Estas, por sua vez, se distinguem do formalismo matemático da mecânica clássica pelo uso de estruturas matemáticas abstratas, tais como espaços de Hilbert de dimensão infinita e operadores sobre estes espaços. Muitas destas estruturas são retiradas da análise funcional, uma área de pesquisa da matemática que foi influenciada, em parte, pelas necessidades da mecânica quântica. Em resumo, os valores de observáveis ​​físicos, tais como energia e momento linear já não eram considerados como valores de funções em espaço de fase, mas como autovalores, mais precisamente como valores espectrais de operadores lineares no espaço de Hilbert.[1]
Estas formulações da mecânica quântica continuam a ser utilizadas hoje. No centro da descrição estão as ideias de estado quântico e quantum observáveis que são radicalmente diferentes daqueles usados ​​em anos anteriores nos modelos da realidade física. Enquanto a matemática permite o cálculo de muitas quantidades que podem ser medidas experimentalmente, há um limite teórico definido para valores que podem ser medidos em simultâneo. Essa limitação foi elucidada por Heisenberg através de um experimento mental, e é representada matematicamente no novo formalismo pela não comutatividade dos observáveis quânticos.
Antes do surgimento da mecânica quântica como uma teoria separada, a matemática utilizada na física consistiu principalmente de geometria diferencial e equações diferenciais parciaisTeoria das probabilidades foi utilizado em mecânica estatística. A intuição geométrica claramente desempenhou um papel importante nos dois primeiros casos e, consequentemente, em teorias da relatividade que foram formuladas inteiramente em termos de conceitos geométricos. A fenomenologia da física quântica surgiu aproximadamente entre 1895 e 1915, e de 10 a 15 anos antes do surgimento da teoria quântica (cerca de 1925) os físicos continuaram a pensar na teoria quântica dentro dos limites do que é agora chamado física clássica, e em particular dentro das mesmas estruturas matemáticas. O exemplo mais sofisticado disso é a regra de quantização de Sommerfeld-Wilson-Ishiwara, que foi formulada inteiramente no espaço de fase clássico.

Postulados da mecânica quântica[editar | editar código-fonte]

Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:
  • O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as  coordenadas generalizadas  e seus momentos conjugados .
  • O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em .
  • A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais.
A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica.[2]
  • Todo sistema físico está associado a um espaço de Hilbert H complexo e separável, sendo o produto interno de H definido por . A todo estado físico associa-se um conjunto de vetores unitários de H que diferem apenas por uma fase complexa.
  • Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
  • Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade  de encontrar o autovalor  é dada por
,
onde  é o grau de degenerescência de  e  correspondem aos autovetores de A com autovalor .
  • Se em uma medida de uma grandeza física  no estado  encontramos um autovalor  de , imediatamente após a medida o estado do sistema será a projeção normalizada de  no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
  • A evolução no tempo  do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coerência
onde H é o Hamiltoniano do sistema e  é a constante reduzida de Planck.
  • O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Partículas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmions.




mecânica estatística (ou física estatística) é o ramo da física que, utilizando a teoria das probabilidades, estuda o comportamento de sistemas mecânicos macroscópicos compostos por um elevado número de entidades constituintes microscópicas a partir do comportamento destas entidades, quando seus estados são incertos ou indefinidos. Os constituintes podem ser átomosmoléculasíons, entre outros. É uma teoria que relaciona um nível de descrição macroscópico (Termodinâmica) com um nível microscópico (Mecânica).[1][2][3]
O estudo de todos os microestados destes sistemas em toda a sua complexidade é pouco prático ou mesmo inviável. Para contornar essa dificuldade, a mecânica estatística usa um conjunto de cálculos probabilísticos para a ocorrência dos diferentes microestados e atribuir uma série de vínculos matemáticos, como a hipótese de ergodicidade.
A mecânica estatística é usada para explicar, por exemplo, o funcionamento termodinâmico de grandes sistemas, sendo chamada então de termodinâmica estatística ou mecânica estatística de equilíbrio. Leis mecânicas microscópicas não contêm conceitos tais como a temperatura, o calor, ou a entropia. No entanto, a mecânica estatística mostra como esses conceitos surgem da incerteza natural sobre o estado de um sistema quando esse sistema é preparado na prática. A vantagem de usar a mecânica estatística é que ela fornece métodos exatos para relacionar grandezas termodinâmicas (tais como a capacidade térmica) para comportamento microscópico, enquanto que na termodinâmica clássica a única opção disponível seria apenas medir e tabular tais quantidades para vários materiais. A mecânica estatística também torna possível estender as leis da termodinâmica para casos que não são considerados na termodinâmica clássica, tais como sistemas microscópicos e outros sistemas mecânicos com poucos Graus de liberdade.[1]
A mecânica estatística também encontra uso fora do equilíbrio. Outra importante divisão é conhecida como mecânica estatística do não-equilíbrio, que lida com a questão de modelar microscopicamente a velocidade de processos irreversíveis que são movidos por desequilíbrios. Exemplos de tais processos incluem reações químicas ou fluxos de partículas e de calor. Ao contrário de com o equilíbrio, não há formalismo exato que se aplique a mecânica estatística do não-equilíbrio em geral, e por isso este ramo da mecânica estatística continua a ser uma área ativa de pesquisa teórica.

Histórico[editar | editar código-fonte]

Em 1738, o físico e matemático suíço Daniel Bernoulli publica seu livro Hydrodynamica, que lançou as bases para a teoria cinética dos gases. Neste trabalho, Bernoulli postulou o argumento, ainda em uso hoje em dia, que os gases consistem de um grande número de moléculas que se movem em todas as direções, que o impacto delas sobre uma superfície causa a pressão e que a temperatura do gás está relacionada à energia cinética dessas moléculas.[4]
Em 1859, depois de ler um artigo de Rudolf Clausius sobre a difusão de moléculas, o físico escocês James Clerk Maxwell formulou a distribuição de Maxwell de velocidades moleculares. Esta foi a primeira lei estatística em física.[5] Cinco anos mais tarde, em 1864, Ludwig Boltzmann, então um jovem estudante em Viena, conhece a pesquisa de Maxwell e passa grande parte de sua vida desenvolvendo o assunto ainda mais.
A mecânica estatística foi iniciada na década de 1870 com os trabalhos de Boltzmann, com grande parte dele sendo publicado em 1896, na obra “Palestras sobre Teoria dos Gases”.[6] Os artigos originais de Boltzmann sobre a interpretação estatística da termodinâmica, o teorema H, teoria de transporte, o equilíbrio térmico, a equação de estado de gases e assuntos semelhantes, ocupam cerca de 2 000 páginas no acervo da Academia de Viena e outras sociedades. Boltzmann introduziu o conceito de um conjunto canônico estatístico de equilíbrio e também pesquisou pela primeira vez a mecânica estatística do não-equilíbrio, com seu teorema H.
Pode-se dizer que a mecânica estatística nasceu dos trabalhos de Maxwell e Boltzmann. Dos estudos sobre as partículas constituintes dos gases (átomos e moléculas) e dos níveis de energia resultou uma grande quantidade de informações sobre as grandezas macroscópicas baseadas somente nas grandezas microscópicas médias.
O termo "mecânica estatística" foi cunhado pelo físico matemático americano J. Willard Gibbs em 1884.[7] Pouco antes de sua morte, Gibbs publica em 1902 seu livro “Princípios Elementares em Mecânica Estatística”, formalizando a mecânica estatística como uma abordagem geral para atender todos os sistemas mecânicos - macroscópicas e microscópicas, gasosos ou não-gasosos.[1] Os métodos de Gibbs foram inicialmente derivados no quadro da mecânica clássica, no entanto, eles foram de tal generalidade que se adaptaram facilmente à mecânica quântica e ainda hoje formam a base da mecânica estatística.[2]

Princípios[editar | editar código-fonte]

Na física, existem dois tipos de mecânica normalmente examinados: a mecânica clássica e mecânica quântica. Para ambos os tipos de mecânica, a abordagem matemática padrão é considerar dois ingredientes:
  1. O estado completo do sistema mecânico em um determinado momento, matematicamente codificada como um ponto de fase (mecânica clássica) ou um vetor de estado quântico puro (mecânica quântica).
  2. Uma equação de movimento que leva o estado a frente no tempo: equações de Hamilton (mecânica clássica) ou a equação de Schrödinger dependente do tempo (mecânica quântica)
Usando estes dois ingredientes, o estado em qualquer outro momento, passado ou futuro, pode, em princípio, ser calculado. Há, porém, uma desconexão entre essas leis e a experiência prática, não sendo necessário, nem teoricamente possível, saber com exatidão a um nível microscópico a posição e a velocidade de cada molécula durante a realização de processos na escala humana, por exemplo, quando se realiza uma reação química. A mecânica estatística preenche essa desconexão entre as leis da mecânica e da experiência prática do conhecimento incompleto, adicionando alguma incerteza sobre qual estado o sistema está inserido, por meio da probabilidade.
Enquanto a mecânica clássica considera apenas o comportamento de um único estado, a mecânica estatística introduz o conceito de ensemble estatístico, que é uma grande coleção de cópias do sistema, virtuais e independentes, em vários estados. O ensemble estatístico é uma distribuição de probabilidade sobre todos os possíveis estados do sistema. Na mecânica estatística clássica, o ensemble é uma distribuição de probabilidade sobre pontos de fases (em oposição a um único ponto de fase na mecânica tradicional), normalmente representado como uma distribuição num espaço de fase com coordenadas canônicas. Em mecânica estatística quântica, o ensemble é uma distribuição de probabilidade sobre estados puros, e pode ser resumido como uma matriz densidade.
O ensemble pode ser interpretado de duas maneiras:[1]
  1. Um ensemble pode ser considerado como a representação dos vários estados possíveis que um único sistema pode estar (probabilidade epistemológica), ou
  2. Os membros do ensemble podem ser entendidos como os estados dos sistemas em experiências repetidas em sistemas independentes, que foram preparados de um modo semelhante, mas imperfeitamente controlado (probabilidade empírica), no limite de um número infinito de ensaios
Estes dois entendimentos são equivalentes para fins diversos, e serão utilizados de maneira intercambiável neste artigo.
Em qualquer modo que a probabilidade é interpretada, cada estado no ensemble evolui ao longo do tempo de acordo com a equação de movimento. Assim, o próprio ensemble (a distribuição de probabilidade sobre estados) também evolui, com os sistemas virtuais do ensemble continuamente deixando um estado e entrando em outro. A evolução do ensemble é dada pela equação de Liouville (mecânica clássica) ou a equação de von Neumann (mecânica quântica). Estas equações são derivadas pela aplicação da equação de movimento mecânico separadamente para cada sistema virtual contido no ensemble, com a probabilidade do sistema virtual ser conservado ao longo do tempo à medida que evolui de estado para estado.
Uma classe especial de ensemble trata daqueles que não evoluem ao longo do tempo. Esses ensembles são conhecidos como ensembles de equilíbrio e a sua condição é conhecida como equilíbrio estatístico. O equilíbrio estatístico ocorre se, para cada estado no ensemble, o ensemble também contém todos os seus estados futuros e passados com probabilidades iguais à probabilidade de estar nesse estado. O estudo dos ensembles de equilíbrio de sistemas isolados é o foco da termodinâmica estatística. A mecânica estatística do não-equilíbrio aborda o caso mais geral de conjuntos que mudam ao longo do tempo, e/ou conjuntos de sistemas não-isolados.

Propriedades[editar | editar código-fonte]

A propriedade central da mecânica estatística é a utilização de métodos estatísticos para a formulação de uma teoria cinética para átomos e moléculas, com o intuito de explicar as propriedades deles em um nível macroscópico da natureza.[8]
Um teorema chave é o valor médio da energia cinética das moléculas de um gás a uma certa temperatura  que é calculado como
 (graus de liberdade).
distribuição de Boltzmann é um resultado muito conhecido na física, que relaciona a Termodinâmica com a Mecânica Estatística.[8] Por exemplo: a distribuição de moléculas na atmosfera - desconsiderando ventos e que se encontra em equilíbrio térmico a uma temperatura 
Supondo que  é o número de moléculas total em um volume  de um gás à pressão  então tem-se que:
 ou  sendo  o número de moléculas por unidade de volume. A temperatura sendo uma constante, a sua pressão será proporcional à sua densidade.
A pressão sobre uma camada  deve ser tal a balancear o peso.
A variação de densidade em função da altitude se dá ao tomar-se uma unidade de área com altura  sua força vertical será a força sobre a área sendo representado por  (pressão).
Em um sistema em equilíbrio, suas forças nas moléculas deverão ser balanceadas ou nulas sendo  a pressão feita na área inferior da camada que deve superar a pressão sobre a área de cima da camada assim balanceando com o peso.
Sendo  a força da gravidade em cada molécula,  é o número total das moléculas em cada área.[8] Com todas essas informações obtém-se a equação diferencial que representa o equilíbrio
Assim, sendo  e também  constantes , elimina-se  e resta a equação para 
Tem-se a variação da densidade em função da altura na atmosfera do exemplo:
 sendo  a densidade em relação à 
Densidade de átomos n em função da altura h
O numerador do expoente da equação anterior representa a energia potencial para cada átomo, sendo sua densidade em cada ponto igual a
Sendo que  é a energia potencial de cada átomo.
Supondo que haja diversas forças em atuação nos átomos, sendo elas carregadas e estejam sob forte influência de um campo elétrico ou haja atração entre elas.
Havendo um tipo apenas de molécula, a força em uma porção de gás será a força sobre uma molécula  o número de moléculas nessa mesma porção, sendo que a força age na direção  Semelhante em sua forma do problema da atmosfera, tomando dois planos paralelos no gás apenas separados por uma distância representada por  então a força sobre cada átomo multiplicada pela a densidade  e por  deve ser balanceada pela diferença de pressão, ou seja,
sendo  o trabalho feito sobre uma molécula ao transportá-la de  até  seu trabalho é igual à diferença de energia potencial (ao quadrado)  assim,
Obtém-se da equação de força anterior:
Resultando em
Sendo  a variação de energia do estado final e inicial.
Esta última expressão é tratada como sendo a Lei de Boltzmann e pode ser interpretada da seguinte forma:
A probabilidade de encontrar moléculas em uma dada configuração espacial é tanto menor quanto maior for a energia dessa configuração a uma dada temperatura.
Tal probabilidade diminui exponencialmente com a energia dividida por 

Mecânica estatística de equilíbrio[editar | editar código-fonte]


Postulado de igual probabilidade a priori
[editar | editar código-fonte]mecânica estatística de equilíbrio, também chamada de termodinâmica estatística, tem como objetivo derivar os princípios da termodinâmica clássica dos materiais a partir de suas partículas constituintes e a interação entre elas. Ou seja, a mecânica estatística de equilíbrio relaciona as propriedades macroscópicas dos materiais em equilíbrio termodinâmico com os comportamentos microscópicos ocorrendo dentro do material. Porém, enquanto a mecânica estatística envolve dinâmica, na termodinâmica estatística há o equilíbrio estatístico, ou estado estável. Isso não significa que as partículas não se movam (equilíbrio mecânico), mas sim que o ensemble não está evoluindo.
Uma condição suficiente (mas não necessária) para o equilíbrio estatístico com um sistema isolado é que a distribuição de probabilidade seja uma função somente de propriedades conservadas (energia total, o número de partículas totais, etc.). Existem muitos conjuntos de equilíbrio diferentes que podem ser considerados, e apenas alguns deles correspondem à termodinâmica. Postulados adicionais são necessários para dizer porque o conjunto para um determinado sistema deve ser de uma forma ou de outra.
Uma abordagem comum encontrada em muitos livros didáticos é usar o postulado de igual probabilidade a priori. Esse postulado diz que
"Para um sistema isolado com uma energia conhecida com exatidão e a composição exatamente conhecida, o sistema pode ser encontrado com igual probabilidade em qualquer microestado consistente com tal conhecimento."
Portanto, o postulado de igual probabilidade a priori proporciona a base para o conjunto microcanônico descrito abaixo. Há vários argumentos a favor do postulado de igual probabilidade a priori:
  • Hipótese ergódica: Um estado ergódico é aquele que evolui ao longo do tempo para explorar "todos estados acessíveis": todos aqueles com a mesma energia e composição. Em um sistema ergódico, o conjunto microcanônico é o único conjunto de equilíbrio possível com energia fixa. Esta abordagem tem aplicabilidade limitada, uma vez que a maioria dos sistemas não são ergódicos.
  • Princípio da indiferença: Na ausência de quaisquer outras informações, só podemos atribuir probabilidades iguais para cada situação compatível.
  • Entropia máxima: Uma versão mais elaborada do princípio da indiferença afirma que o conjunto correto é o conjunto que é compatível com a informação conhecida e que tem a maior entropia de Gibbs.
Outros postulados fundamentais para a mecânica estatística também foram propostos.

Ensembles ou conjuntos[editar | editar código-fonte]

Existem três ensembles de equilíbrio com uma forma simples, que podem ser definidos para qualquer sistema isolado delimitado dentro de um volume finito. Estes são os conjuntos mais frequentemente discutidos em termodinâmica estatística. No limite macroscópico, todos eles correspondem a termodinâmica clássica.

Conjunto microcanônico[editar | editar código-fonte]

Um conjunto microcanônico é um conjunto de réplicas de microssistemas identicamente preparados. Descreve um sistema com energia precisamente determinada e composição fixa (número preciso de partículas). Cada réplica tem os mesmos possíveis valores de massa(m), volume(V) e energia (E), mas cada uma pode evoluir diferentemente através do espaço de configurações. No conjunto microcanônico não há troca de calor entre o sistema e o exterior e o número de partículas é fixo. O conjunto microcanônico contém com igual probabilidade cada estado possível que é consistente com essa energia e composição.

Conjunto canônico[editar | editar código-fonte]

Semelhantemente, um conjunto canônico é um conjunto de réplicas de um sistema, identicamente preparados, onde cada um tem valores definidos de massa(m), volume(V) e temperatura(T). Descreve um sistema de composição fixa que se encontra em equilíbrio térmico com um banho de calor de uma temperatura precisa, ou seja, no conjunto canônico o número de partículas é fixo, mas o sistema troca calor com o ambiente. O conjunto canônico contém estados de variação de energia, mas composição idêntica; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total.

Conjunto grão-canônico[editar | editar código-fonte]

Descreve um sistema com a composição não fixada (número de partículas incerto) que está em equilíbrio térmico e químico com um reservatório termodinâmico. Assim, no conjunto grão-canônico o sistema pode trocar calor e partículas, ou seja, o número de partículas pode variar. O reservatório tem uma temperatura precisa, e os potenciais químicos precisos para diversos tipos de partículas. O ensemble grão-canônico contém estados de variação de energia e número variado de partículas; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total e número de partículas totais.
Para sistemas contendo muitas partículas (o limite termodinâmico), todos os três conjuntos listados acima tendem a ter um comportamento idêntico. Nesse caso, a escolha do conjunto é simplesmente uma questão de conveniência matemática.
Casos importantes onde os conjuntos termodinâmicos não dão resultados idênticos incluem:
  • Sistemas microscópicos;
  • Grandes sistemas em fase de transição;
  • Grandes sistemas com interações de longo alcance.
Nestes casos, o conjunto termodinâmico deve ser escolhido corretamente, pois existem diferenças observáveis ​​entre estes conjuntos não apenas no tamanho das flutuações, mas também em quantidades médias, tais como a distribuição de partículas. O conjunto correto é o que corresponde à maneira como o sistema foi preparado e caracterizado, em outras palavras, o conjunto que reflete o conhecimento sobre esse sistema.
Ensembles termodinâmicos
MicrocanônicoCanônicoGrão-canônico
Variáveis fixasN, E, VN, T, Vμ, T, V
Características microscópicas
  • Número de microestados
Função macroscópica
  • Entropia de Boltzmann

Métodos de cálculo





Uma estatística quantica, no contexto da mecânica quântica e no da mecânica estatística, é a descrição de como a energia de cada um dos entes unitários constituintes de um ensemble está distribuida, dada uma energia total E constante, sob a restrição de que:Na mecânica quântica, a equação de Schrödinger é uma equação diferencial parcial que descreve como o estado quântico de um sistema físico muda com o tempo. Foi formulada no final de 1925, e publicado em 1926, pelo físico austríaco Erwin Schrödinger.[1]
Na mecânica clássica, a equação de movimento é a segunda lei de Newton, (F = ma) utilizada para prever matematicamente o que o sistema fará a qualquer momento após as condições iniciais do sistema. Na mecânica quântica, o análogo da lei de Newton é a equação de Schrödinger para o sistema quântico (geralmente átomos, moléculas e partículas subatômicas sejam elas livres, ligadas ou localizadas). Não é uma equação algébrica simples, mas, em geral, uma equação diferencial parcial linear, que descreve o tempo de evolução da função de onda do sistema (também chamada de "função de estado").[2]:1–2
O conceito de uma função de onda é um postulado fundamental da mecânica quântica. A equação de Schrödinger também é muitas vezes apresentada como um postulado separado, mas alguns autores[3]:Capítulo 3 afirmam que pode ser derivada de princípios de simetria. Geralmente, "derivações" da equação demonstrando sua plausibilidade matemática para descrever dualidade onda-partícula.
Na interpretação padrão da mecânica quântica, a função de onda é a descrição mais completa que pode ser dada a um sistema físico. As soluções para a equação de Schrödinger descrevem não só sistemas molecularesatômicas e subatômicas, mas também os sistemas macroscópicos, possivelmente, até mesmo todo o universo.[4]:292ff A equação de Schrödinger, em sua forma mais geral, é compatível tanto com a mecânica clássica ou a relatividade especial, mas a formulação original do próprio Schrödinger era não-relativista.
A equação de Schrödinger não é a única maneira de fazer previsões em mecânica quântica — outras formulações podem ser utilizadas, tais como a mecânica matricial de Werner Heisenberg, e o trajeto da integração funcional de Richard Feynman.

Equação[editar | editar código-fonte]

Equação dependente do tempo[editar | editar código-fonte]

Usando a notação de Dirac, o vetor de estados é dado, em um instante  por . A equação de Schrödinger dependente do tempo, então, escreve-se:[5]
Equação de Schrödinger Dependente do Tempo (geral)
Em que  é a unidade imaginária é a constante de Planck dividida por , e o Hamiltoniano  é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.

Equação independente do tempo[editar | editar código-fonte]

Equação unidimensional[editar | editar código-fonte]

Em uma dimensão, a equação de Schrödinger independente do tempo para uma partícula escreve-se:[6]
,
em que  é a função de onda independente do tempo em função da coordenada  é a constante de Planck  dividida por  é a massa da partícula;  é a função energia potencial e  é a energia do sistema.

Equação multidimensional[editar | editar código-fonte]

Em mais de uma dimensão a equação de Schrödinger independente do tempo para uma partícula escreve-se:[7]
em que  é o operador laplaciano em  dimensões aplicado à função .

Relação com outros princípios[editar | editar código-fonte]

Uma maneira mais didática de observar a equação de Schrödinger é em sua forma independente do tempo e em uma dimensão. Para tanto, serão necessárias três relações:
Definição de Energia Mecânica: 
Equação do Oscilador harmônico
Relação de De Broglie: 
Onde  é a função de onda,  é o comprimento de onda, h é a constante de Planck e p é o momento linear.
Da Relação de De Broglie, temos que , que pode ser substituída na equação do Oscilador Harmônico:
Rearranjando a equação de energia, temos que , substituindo  na equação anterior:
 , definindo , temos:
Que é a Equação Independente do Tempo de Schrödinger e também pode ser escrita na notação de operadores:
, em que  é o Operador Hamiltoniano operando sobre a função de onda.

Partícula em uma caixa rígida[editar | editar código-fonte]

Ver artigo principal: Partícula em uma caixa

Oscilador harmônico quântico[editar | editar código-fonte]

Ver artigo principal: Oscilador harmônico quântico
Assim como na mecânica clássica, a energia potencial do oscilador harmônico simples unidimensional é:[8]
Lembrando a relação , também pode se escrever:
Então a equação de Schrödinger para o sistema é:
Solucionando a equação de Schrödinger, obtém-se os seguintes estados estacionários:
em que Hn são os polinômios de Hermite.
E os níveis de energia correspondentes são:
Isso ilustra novamente a quantização da energia de estados ligados.




Na teoria quântica de campos, as distribuições de Wightman podem ser analiticamente continua a funções analíticas em espaço euclidiano com o domínio restrito ao conjunto ordenado de pontos no espaço euclidiano sem pontos coincidentes. Essas funções são chamadas as funções Schwinger, em homenagem a Julian Schwinger. São funções analíticas, simétricas sob a permutação de argumentos[1] (antisimétrico para campos fermiônicos[2][3]) euclidianos covariante e satisfazem uma propriedade conhecida como positividade de reflexão.
Escolha qualquer coordenada arbitrária τ e escolha uma função de teste fN em um conjunto com N pontos como seus argumentos. Suponha que fN tem o seu apoio no subconjunto de tempo-ordenado de N pontos com 0 < τ1 < ... < τN. Selecione uma fN tal que para cada N positivo, com os f sendo zero para todos os N maiores do que algum número inteiro M. Dado um ponto x, seja o ponto refletido acerca do hiperplano τ = 0. Então,
onde * representa a conjugação complexa.[4]
teorema de Osterwalder-Schrader afirma que as funções Schwinger que satisfazem essas propriedades podem ser analiticamente continuas dentro de uma teoria quântica de campos.[5] A integração de funcionais euclidianas satisfaz formalmente a reflexão de positividade[6][7]. Escolha qualquer polinômio funcional F do campo φ, que não depende do valor de φ(x) para os pontos x cujas coordenadas τ são não positivas. Então,
Uma vez que a ação S é real e pode ser dividida em S+, que só depende de φ no semi-espaço positivo[8] e S que só depende de φ no semi-espaço negativo[9] e se S também acontece ser invariante sob a ação combinada de tomada de uma reflexão e conjugando complexo todos os campos; então, a quantidade precedente tem de ser não negativa.[10].
  1. a energia passa a ser quantizada;
  2. as partículas objeto de estudo passam a ser indistinguíveis.
Isso é feito expressando-se as probabilidades relativas de uma partícula com energia 
De modo clássico, a probabilidade é dada por:
onde
é a chamada função de partição
Nos casos quanticos, o que muda é a questão da quantização do espaço de fase, o que impõe um "volume" mínimo de célula possível nesse espaço.





Função de onda na mecânica quântica é algo que descreve o estado quântico de um sistema de uma ou mais partículas, e contém todas as informações sobre o sistema considerado isolado. Quantidades associadas com os cálculos, tais como o momento médio de uma partícula, são derivados a partir da função de onda por meio de operações matemáticas que descrevem a sua interação com os dispositivos de observação. Assim, a função de onda é uma entidade central na mecânica quântica. Os símbolos mais comuns para uma função de onda são as letras gregas ψ ou Ψ . A equação de Schrödinger determina como a função de onda evolui ao longo do tempo, ou seja, a função de onda é a solução da equação de Schrödinger. A função de onda se comporta qualitativamente como outras ondas, como ondas de água ou ondas em uma corda, porque a equação de Schrödinger é matematicamente um tipo de equação de onda. Isso explica o nome "função de onda", e dá origem a dualidade onda-partícula. A onda da função de onda, no entanto, não é uma onda no espaço físico; é uma onda em um "espaço" matemático abstrato, que pode ser representado como "espaço de configuração", ou pode ser representado como "espaço de momentum", e, por isso se difere fundamentalmente de ondas de água ou ondas em uma corda.[1][2][3][4][5][6][7]
Uma função de onda para um determinado sistema não tem uma representação única. Mais comumente, é tomada como sendo uma função de todas as coordenadas de posição das partículas e do tempo, ou seja, a função de onda está na "posição espacial". No entanto, também pode considerar em vez uma função de onda no "espaço de momento"; uma função de todos os momentos das partículas e do tempo . Em geral, a função de onda de um sistema é uma função de variáveis contínuas e descontínuas que caracteriza o grau de liberdade do sistema, e há uma função de onda para todo o sistema, e não uma função de onda para cada partícula individual em certo sistema. Partículas elementares, como os elétrons, têm spin, e a função de onda deve incluir essa propriedade fundamental como um grau de liberdade intrínseca. A função de onda é espinoriail para os férmions, ou seja, para partículas com spin semi-inteiro (1/2, 3/2, 5/2, ...), ou tensorial para os bósons, que são partículas com spin inteiro (0, 1, 2, 3 , ...).
Na maioria dos tratamentos da mecânica quântica, a função de onda é um valor complexo. Em uma interpretação importante da mecânica quântica chamada a interpretação de Copenhague, o módulo de elasticidade ao quadrado da função de onda, |ψ|2 , é um número real se interpretado como a densidade de probabilidade de encontrar uma partícula em um dado local num determinado momento, se a posição da partícula está a ser medida. Uma vez que a função de onda é um valor complexo, apenas a sua fase relativa e a sua relativa magnitude podem ser medidas. Isso não diz nada diretamente sobre as magnitudes ou as direções das observações mensuráveis, tem de se aplicar operadores quânticos para a função de onda ψ e encontrar os seus próprios valores, que correspondem a conjuntos de possíveis resultados de medição.
No entanto, os números complexos não são necessariamente usados em todos os cálculos. Louis de Broglie em seus últimos anos propôs uma função de onda de valor real ligada a uma função de onda complexa por uma constante de proporcionalidade e desenvolveu a teoria de Broglie-Bohm.

Problemas de nomenclatura[editar | editar código-fonte]

O termo função de onda segundo a mecânica quântica tem um significado bastante diferente dependendo do contexto, seja na física clássica, seja no eletromagnetismo clássico.
Por causa da relação concreta entre função de onda e localização de uma partícula num espaço de posições, que se deriva da aproximação sucedida das Ondas de matéria, de Louis de Broglie, e demostrada no Experimento de Davisson-Germer, muitos textos sobre mecânica quântica têm um enfoque "ondulatório". O termo "função de onda" é usado para o vetor de estado por este ser a solução de uma equação de onda, a equação de Schrödinger.
Na química, especialmente, um dos objetivos da função de onda de elétrons é descrever os chamados orbitais eletrônicos; com isso, aumenta ainda mais a confusão de termos que se referem a um mesmo conceito.

Definição[editar | editar código-fonte]

O uso moderno do termo função de onda é para qualquer vetor ou função que descreva o estado de um sistema físico pela expansão em termos de outros estados do mesmo sistema. Normalmente, uma função de onda é:
  • um vetor complexo com finitos componentes:
,
  • um vetor complexo com infinitos componentes:
,
.
Em todos os casos, a função de onda provê uma descrição completa do sistema físico ao qual está associado. Porém, deve-se frisar que uma função de onda não é unicamente determinada pelo sistema ao qual está associada, já que muitas funções de onda diferentes podem descrever o mesmo cenário físico.

Interpretação[editar | editar código-fonte]

A interpretação física da função de onda depende do contexto. Veja alguns exemplos a seguir:
Uma partícula em uma dimensão espacial
A função de onda espacial associada a uma partícula em uma dimensão é uma função complexa  definida no conjunto dos números reais. O quadrado complexo da função de onda, , é interpretado como a densidade de probabilidade associada à posição da partícula e, por isso, a probabilidade de a medição da posição da partícula dar um valor no intervalo  é
.
Isto leva à condição de normalização
.
já que a medição da posição de uma partícula deve resultar em um número real.